skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sparks, Erin E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Marshall-Colon, Amy (Ed.)
    Abstract Being the first plant to have its genome sequenced, Arabidopsis thaliana (Arabidopsis) is a well-established genetic model plant system. Studies on Arabidopsis have provided major insights into the physiological and biochemical nature of plants. Methods that allow us to study organisms’ metabolism computationally include using genome-scale metabolic models (GEMs). Despite its popularity, no GEM currently maps the metabolic activity in the roots of Arabidopsis, which is the organ that faces and responds to stress conditions in the soil. We have developed a comprehensive metabolic model of the Arabidopsis root system—AraRoot. The final model includes 2,682 reactions, 2,748 metabolites, and 1,310 genes. Analyzing the metabolic pathways in this model identified 158 possible bottleneck genes that impact biomass production, most of which were found to be related to phosphorous-containing- and energy-related pathways. Further insights into tissue-specific metabolic reprogramming conclude that the cortex layer in the roots is likely responsible for root growth under prolonged exposure to high salt conditions. At the same time, the endodermis and epidermis are responsible for producing metabolites responsible for increased cell wall biosynthesis. The epidermis was found to have a very poor ability to regulate its metabolism during exposure to high salt concentrations. Overall, AraRoot is the first metabolic model that comprehensively captures the biomass formation and stress responses of the tissues in the Arabidopsis root system. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  2. Plants have a remarkable ability to generate organs with a different identity to the parent organ, called ‘trans-organogenesis’. An example of trans-organogenesis is the formation of roots from stems (a type of adventitious root), which is the first type of root that arose during plant evolution. Despite being ancestral, stem-borne roots are often contextualised through lateral root research, implying that lateral roots precede adventitious roots. In this review we challenge that idea, highlight what is known about stem-borne root development across the plant kingdom, the remarkable diversity in form and function, and the many remaining evolutionary questions. Exploring stem-borne root evolutionary development can enhance our understanding of developmental decision making and the processes by which cells acquire their fates. 
    more » « less
  3. Brace roots (roots developing from aerial stem nodes) are a type of adventitious root that develop from aboveground stem nodes in many monocots. Brace roots may remain aerial or penetrate the soil as they perform root functions such as anchorage and resource acquisition. Although brace root development in soil or aerial environments influences function, a lot is still unknown about how their anatomy, architecture and development contributes to their function. This article summarizes the current state of knowledge on brace roots. 
    more » « less
  4. Plants must be able to sense and respond to mechanical stresses encountered throughout their lifespan. The MscS-Like (MSL) family of mechanosensitive ion channels is one mechanism to perceive mechanical stresses. In maize, brace roots emerge from stem nodes above the soil and some remain aerial while some grow into the soil. We tested the hypothesis that MSL gene expression is higher in subterranean brace roots compared to those that remain aerial. However, there was no difference in MSL expression between the two environments. This work sets the foundation for a deeper understanding of MSL gene expression and function in maize. 
    more » « less
  5. SUMMARY A major challenge in global crop production is mitigating yield loss due to plant diseases. One of the best strategies to control these losses is through breeding for disease resistance. One barrier to the identification of resistance genes is the quantification of disease severity, which is typically based on the determination of a subjective score by a human observer. We hypothesized that image‐based, non‐destructive measurements of plant morphology over an extended period after pathogen infection would capture subtle quantitative differences between genotypes, and thus enable identification of new disease resistance loci. To test this, we inoculated a genetically diverse biparental mapping population of tomato (Solanum lycopersicum) withRalstonia solanacearum, a soilborne pathogen that causes bacterial wilt disease. We acquired over 40 000 time‐series images of disease progression in this population, and developed an image analysis pipeline providing a suite of 10 traits to quantify bacterial wilt disease based on plant shape and size. Quantitative trait locus (QTL) analyses using image‐based phenotyping for single and multi‐traits identified QTLs that were both unique and shared compared with those identified by human assessment of wilting, and could detect QTLs earlier than human assessment. Expanding the phenotypic space of disease with image‐based, non‐destructive phenotyping both allowed earlier detection and identified new genetic components of resistance. 
    more » « less
  6. Summary Brace roots are a unique but poorly understood set of organs found in some large cereal crops such as maize. These roots develop from aerial stem nodes and can remain aerial or grow into the ground. Despite their name, the function of these roots to brace the plant was only recently shown. In this article, I discuss the current understanding of brace root function and development, as well as the multitude of open questions that remain about these fascinating organs. 
    more » « less
  7. Nitrate is a nutrient and a potent signal that impacts global gene expression in plants. However, the regulatory factors controlling temporal and cell type–specific nitrate responses remain largely unknown. We assayed nitrate-responsive transcriptome changes in five major root cell types of the Arabidopsis thaliana root as a function of time. We found that gene-expression response to nitrate is dynamic and highly localized and predicted cell type–specific transcription factor (TF)–target interactions. Among cell types, the endodermis stands out as having the largest and most connected nitrate-regulatory gene network. ABF2 and ABF3 are major hubs for transcriptional responses in the endodermis cell layer. We experimentally validated TF–target interactions for ABF2 and ABF3 by chromatin immunoprecipitation followed by sequencing and a cell-based system to detect TF regulation genome-wide. Validated targets of ABF2 and ABF3 account for more than 50% of the nitrate-responsive transcriptome in the endodermis. Moreover, ABF2 and ABF3 are involved in nitrate-induced lateral root growth. Our approach offers an unprecedented spatiotemporal resolution of the root response to nitrate and identifies important components of cell-specific gene regulatory networks. 
    more » « less
  8. The acquisition of quantitative information on plant development across a range of temporal and spatial scales is essential to understand the mechanisms of plant growth. Recent years have shown the emergence of imaging methodologies that enable the capture and analysis of plant growth, from the dynamics of molecules within cells to the measurement of morphometricand physiological traits in field-grown plants. In some instances, these imaging methods can be parallelized across multiple samples to increase throughput. When high throughput is combined with high temporal and spatial resolution, the resulting image-derived data sets could be combined with molecular large-scale data sets to enable unprecedented systems-level computational modeling. Such image-driven functional genomics studies may be expected to appear at an accelerating rate in the near future given the early success of the foundational efforts reviewed here. We present new imaging modalities and review how they have enabled a better understanding of plant growth from the microscopic to the macroscopic scale. 
    more » « less